A C - Symplectic Free S 1 - Manifold with Contractible Orbits and Cat = 12 Dim
نویسنده
چکیده
An interesting question in symplectic geometry concerns whether or not a closed symplectic manifold can have a free symplectic circle action with orbits contractible in the manifold. Here we present a c-symplectic example, thus showing that the problem is truly geometric as opposed to topological. Furthermore, we see that our example is the only known example of a c-symplectic manifold having non-trivial fundamental group and LusternikSchnirelmann category precisely half its dimension.
منابع مشابه
Symplectic Homology and Periodic Orbits near Symplectic Submanifolds
We show that a small neighborhood of a closed symplectic submanifold in a geometrically bounded aspherical symplectic manifold has nonvanishing symplectic homology. As a consequence, we establish the existence of contractible closed characteristics on any thickening of the boundary of the neighborhood. When applied to twisted geodesic flows on compact symplectically aspherical manifolds, this i...
متن کاملPeriodic Orbits near Symplectic Submanifolds
We show that a small neighborhood of a closed symplectic submanifold in a geometrically bounded aspherical symplectic manifold has nonvanishing symplectic homology. As a consequence, we establish the existence of contractible closed characteristics on any thickening of the boundary of the neighborhood. When applied to twisted geodesic flows on compact symplectically aspherical manifolds, this i...
متن کاملRational Ljusternik-schnirelmann Category and the Arnold Conjecture for Nilmanifolds
A nilmanifold is a homogenous space of a nilpotent Lie group. If M is a compact symplectic nilmanifold, then any 1-periodic Hamiltonian system on M has at least dim(M) + 1 contractible periodic orbits with period 1. This provides an aarmative answer to the Arnold conjecture for such manifolds. The proof uses the techniques of rational homotopy theory, and in particular an extension of the ratio...
متن کاملRelative Hofer–zehnder Capacity and Periodic Orbits in Twisted Cotangent Bundles
The main theme of this paper is a relative version of the almost existence theorem for periodic orbits of autonomous Hamiltonian systems. We show that almost all low levels of a function on a geometrically bounded symplectically aspherical manifold carry contractible periodic orbits of the Hamiltonian flow, provided that the function attains its minimum along a closed symplectic submanifold. As...
متن کاملFree Circle Actions with Contractible Orbits on Symplectic Manifolds
We prove that closed symplectic four-manifolds do not admit any smooth free circle actions with contractible orbits, without assuming that the actions preserve the symplectic forms. In higher dimensions such actions by symplectomorphisms do exist, and we give explicit examples based on the constructions of [5].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005